Why is processing a sorted array faster than processing an unsorted array?

Trainee Asked on October 12, 2019 in C++ Language,   Java.
Add Comment
1 Answer(s)

Here is a piece of C++ code that shows some very peculiar behavior. For some strange reason, sorting the data miraculously makes the code almost six times faster:

#include <algorithm>
#include <ctime>
#include <iostream>

int main()
{
    // Generate data
    const unsigned arraySize = 32768;
    int data[arraySize];

    for (unsigned c = 0; c < arraySize; ++c)
        data[c] = std::rand() % 256;

    // !!! With this, the next loop runs faster.
    std::sort(data, data + arraySize);

    // Test
    clock_t start = clock();
    long long sum = 0;

    for (unsigned i = 0; i < 100000; ++i)
    {
        // Primary loop
        for (unsigned c = 0; c < arraySize; ++c)
        {
            if (data[c] >= 128)
                sum += data[c];
        }
    }

    double elapsedTime = static_cast<double>(clock() - start) / CLOCKS_PER_SEC;

    std::cout << elapsedTime << std::endl;
    std::cout << "sum = " << sum << std::endl;
}
  • Without std::sort(data, data + arraySize);, the code runs in 11.54 seconds.
  • With the sorted data, the code runs in 1.93 seconds.

Initially, I thought this might be just a language or compiler anomaly, so I tried Java:

import java.util.Arrays;
import java.util.Random;

public class Main
{
    public static void main(String[] args)
    {
        // Generate data
        int arraySize = 32768;
        int data[] = new int[arraySize];

        Random rnd = new Random(0);
        for (int c = 0; c < arraySize; ++c)
            data[c] = rnd.nextInt() % 256;

        // !!! With this, the next loop runs faster
        Arrays.sort(data);

        // Test
        long start = System.nanoTime();
        long sum = 0;

        for (int i = 0; i < 100000; ++i)
        {
            // Primary loop
            for (int c = 0; c < arraySize; ++c)
            {
                if (data[c] >= 128)
                    sum += data[c];
            }
        }

        System.out.println((System.nanoTime() - start) / 1000000000.0);
        System.out.println("sum = " + sum);
    }
}

With a similar but less extreme result.


My first thought was that sorting brings the data into the cache, but then I thought how silly that was because the array was just generated.

  • What is going on?
  • Why is processing a sorted array faster than processing an unsorted array?

The code is summing up some independent terms, so the order should not matter.

Trainee Answered on October 12, 2019.
Add Comment

Your Answer

By posting your answer, you agree to the privacy policy and terms of service.